The following opertions/syntax are supported:
×
Operation Examples Explanation
+, -, *, / 3*45 Arithmetic, observes common sense operator precedence
a \times b, a \cdot b 3\times 45 Multiplication, same as a*b
\frac{a}{b} \frac{5}{12}, \frac23 $\frac{a}{b}$
x^y 3^100 $x^y$
n!, n!! 16! The factorial and double factorial of $n$
\binom{n}{k} \binom{15}{3}, \binom84 The binomial coefficient $\binom{n}{k}$
gcd(a,b), lcm(a,b) gcd(12,15), lcm(3,5,8) The greatest common divisor, and the least common multiple. Supports arbitrary number of arguments.
isprime(n) isprime(2^16+1) Whether $n$ is a prime number
nextprime(n) nextprime(2^16+1) The smallest prime number $>n$
nextprimes(n, k) nextprimes(11, 5) The $k$ smallest prime numbers $>n$
primelist(a, b) primelist(100, 200) All prime number $p$ such that $a \leq p \leq n$
factor(n) primelist(100, 200) The prime factorization of $n$
adic(p, n) adic(3, 10^6-1) The p-adic number $v_p(n)$, where $p$ must be a prime
totient(n) totient(24) The Euler's totient function $\varphi(n)$
floor(x), ceil(x) floor(35/8) The floor $\lfloor x \rfloor$ and ceil $\lceil x \rceil$
a mod b or a \pmod{b} 2^100 mod 3 $a \pmod{b}$. Note that
  • $b$ must be positive integer.
  • the mod operator has lower precendence than arithmetic operators, x + y mod m means $(x+y)\pmod{m}$.
  • a / b mod m means $a \cdot b^{-1} \pmod{m}$
jacobi(a,b) or kronecker(a,b) jacobi(21, 5) Both mean the Kronecker symbol $\begin{pmatrix} a \cr \hdashline b \cr \end{pmatrix}$. Note when $b$ is an odd integer, Kronecker symbol is same as Jacobi symbol.
Session history:  

Input math expression below (use "clear" to clear session history):

[1]: